Подписаться на новые статьи
Сушка картофеля
28 января 2020

Сушка картофеля

Введение
Использование переменного теплоподвода при сушке картофеля позволит интенсифицировать процесс сушки, сократить время сушки картофеля, применение щадящих температурных режимов, максимально адаптированных к основным кинетическим закономерностям, позволит снизить негативное воздействие на термолабильные вещества картофеля и повысить его качество.
Материалы и методы
Целью работы является улучшение качества сушеного картофеля и повышение тепловой эффективности процесса сушки за счет использования ступенчатого режима радиационно-конвективной сушки картофеля и снижение энергозатрат на получение готового продукта.
Процесс сушки картофеля исследовали в следующих диапазонах изменения технологических параметров: температура воздуха 293 К; скорость потока воздуха от 0,3 до 1,6 м/с, толщина пластины картофеля 1,5х10–3 м, расстояние от продукта до поверхности ИК-лампы – 0,4 м. Мытый картофеля подвергают инспекции и сортированию, калибровке, очистке кожуры, а затем нарезают тонкими пластинами толщиной 1,5 мм.
Нарезанные пластины картофеля подвергают комбинированной радиационно-конвективной сушке. Причем нагрев картофеля проводят инфракрасными лучами с длиной волны в диапазоне 1,16–1,65 мкм и плотностью теплового потока 2,69–5,44 кВт/м2 при одновременном конвективным обдуве воздухом для удаления испаряемых из продукта водяных паров с начальной температурой 293 К. При анализе стационарных режимов радиационно-конвективной сушки пластин картофеля установлено, что в периоде постоянной скорости сушки удаляется, в основном, капиллярная и осмотическая влага. При этом вся теплота, подводимая к пластинам картофеля, затрачивается на интенсивное поверхностное испарение влаги, и температура продукта остается постоянной.
Период убывающей скорости сушки характеризуется снижением скорости сушки и увеличением температуры пластин картофеля, при этом удаляется осмотическая и адсорбционная влага. Этот период начинается в тот момент, когда влажность на поверхности картофеля становится равной первой критической. При этом температура этой поверхности увеличивается. Зона испарения влаги находится внутри пластины пластин картофеля, а не на его поверхности, поэтому влага из центральных слоев пластин доходит до зоны испарения в жидком виде, а от зоны испарения до поверхности она движется в парообразном состоянии. В результате дифференциально-термического анализа и анализа кинетических закономерностей процесса радиационно-конвективной сушки пластин картофеля предлагается следующий подход к обоснованию выбора ступенчатых режимов сушки картофеля.

Процесс радиационно-конвективной сушки картофеля разбивается на несколько различных по продолжительности этапов, на каждом из которых в зависимости от вида формы связи испаряемой из картофеля влаги подбирается свой рациональный режим радиационно-конвективной сушки пластин. При этом температура и скорость теплоносителя (воздуха) принимали фиксированные значения, необходимые для своевременного и эффективного отвода испаряемых из пластин картофеля водяных паров.
В результате исследования кинетических зависимостей процесса радиационно-конвективной сушки пластин картофеля при стационарных режимах разработан ступенчатый режим сушки картофеля, сущность которого заключается в следующем. На первом этапе порезанные дольки картофеля толщиной 1,5 мм нагревают инфракрасными лучами до температуры 318 К при одновременном обдуве воздушным потоком со скоростью  1,5 м/с в течение 6 мин; на втором этапе – до температуры 323 К и скорости воздушного потока 1,2 м/с в течение  18 мин; на третьем этапе – до температуры 328 К и скорости воздушного потока 0,7 м/с в течение 12 мин, затем высушенные до конечной влажности 12% пластины картофеля обрабатывают вкусовыми добавками (специями).
Продолжительности всех трех временных этапов определялись экспериментально в результате анализа полученных кривых сушки при стационарных режимах сушки пластин картофеля.
Результаты и обсуждение
Из анализа кривых сушки и скорости сушки (рисунок 1), температурной кривой и термограммы (рисунок 2) процесса радиационно-конвективной сушки пластин картофеля при ступенчатом температурном и гидродинамическом режиме видно, что имеют место три периода: прогрева, постоянной и убывающей скоростей сушки.


На первом этапе, который соответствовал периоду прогрева, происходил нагрев наружных слоев и испарение влаги с поверхности картофеля. Температура поверхностного слоя с самого начала сушки возрастает, в толще продукта возникают температурные градиенты, который уменьшается к центру продукта. Поле влажности внутри пластин картофеля становится неоднородным: на поверхности влажность ниже, чем в его толще, то есть появляется градиент концентрации влаги, которые увеличиваются к центру продукта. Под действием этого градиента влага в жидком виде начинает перемещаться к поверхности продукта.

При этом поток влаги преодолевает сопротивление продукта, которое снижает скорость продвижение влаги, вследствие чего повышается температура долек картофеля (рисунок 2).

По мере удаления физико-механической влаги скорость теплоносителя, как определяющий фактор интенсивности процесса, теряет свое значение. Поэтому на втором этапе сушку предпочтительнее вести при снижающейся скорости и повышающейся температуре теплоносителя. На втором временном этапе, который соответствовал периоду постоянной скорости, предварительно подсушенные пластины картофеля нагревают инфракрасными лучами до температуры 323 К при одновременном обдуве воздушным потоком (рисунок 1).

Увеличение температуры нагрева картофеля обусловлено тем, что на интенсивность удаления осмотической влаги наибольшее влияние оказывает температура, как фактор, определяющий интенсивность внутреннего влагопереноса. Этот период сушки характеризуется постоянной температурой продукта (рисунок 2), при этом удаляется капиллярная влага. В этот период вся теплота, подводимая к пластинам картофеля, затрачивается на интенсивное поверхностное испарение влаги, и температура продукта остается постоянной.
На третьем временном этапе, который соответствовал первой (начальной) части периода убывающей скорости, картофель нагревается ИК-лучами до температуры 328 К при одновременном обдуве воздушным потоком. Этот период сушки характеризуется снижением скорости сушки и увеличением температуры картофеля (рисунок 2), при этом удаляется осмотическая и полиадсорбционная влага. В связи с тем, что на интенсивность удаления полиадсорбционной влаги наибольшее влияние оказывает температура, как фактор, определяющий интенсивность внутреннего влагопереноса, то продукт нагревают инфракрасными лучами до температуры 328 К.
На третьем этапе пластины картофеля нагревают инфракрасными лучами до более высокой температуры (328 К) при одновременном обдуве воздушным потоком. В связи с тем, что на интенсивность удаления моноадсорбционной влаги наибольшее влияние оказывает температура, как фактор, определяющий интенсивность внутреннего влагопереноса.

При этом также прекращается охлаждающее действие процесса испарения с поверхности картофеля, и температура поверхности увеличивается, стремясь к заданной температуре нагрева продукта, которая поддерживалась за счет импульсного режима работы инфракрасных ламп. Все это приводит к уменьшению количества теплоты, передаваемой через поверхность пластин картофеля из окружающей среды. Находясь в довольно длительном контакте со стенками пор, пар успевает прогреться до температуры стенок и с поверхности пластин пар уходит в инфракрасную камеру с температурой поверхности продукта.
Затем высушенные до конечной влажности 12% пластины картофеля обрабатывают вкусовыми добавками (специями).
Заключение
Проведенные экспериментальные исследования и анализ показателей качества полученных картофельных пластин показали их высокую пищевую ценность, обусловленную высокой сохранностью ценных термолабильных веществ из-за применения «мягких» температурных режимов сушки и высокой интенсивностью влагоудаления.

Е. Ю. Желтоухова, А. А. Каданцев, В. И. Яницкий
Воронежский государственный университет инженерных технологий
УДК 664.854

Просмотров : 272
ФЕРМЕР. Поволжье
ФЕРМЕР. Черноземье

© КОПИРАЙТ, 2013-2019. Все материалы на сайте защищены Законом об авторском праве. Использование материалов с сайта возможно только с письменного согласия Администрации сайта. По вопросам разрешений на публикации и рекламы обращайтесь +7-905-395-28-88. Мобильное приложение доступно на iTunes и AndroidMarket.